Theoretical Study of the Reaction of Acetylene with $\mathrm{BH}_{3}, \mathrm{~B}_{2} \mathrm{H}_{6}$, and $\mathrm{B}_{3} \mathrm{H}_{7}$. A Proposed Mechanism of Carborane Formation

Michael L. McKee
Contribution from the Department of Chemistry, Auburn University, Auburn, Alabama 36849
Received December 12, 1994^{\star}

Abstract

The goal of this study is to evaluate a reaction mechanism which leads to the formation of a closocarborane starting from $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$. Experimentally, it is known that alkylboranes, nido-carboranes, and closocarboranes can all be obtained depending on reaction conditions. For this study, geometries were computed at the MP2/6-31G(d) level and relative energies were estimated at the $[$ MP4/6-311 $+\mathrm{G}(\mathrm{d}, \mathrm{p})]$ level. The first assumed step is the elimination of BH_{3} from $\mathrm{B}_{4} \mathrm{H}_{10}$ to form $\mathrm{B}_{3} \mathrm{H}_{7}$. Rather than the expected hydroboration product, the initial reaction of $\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2}$ gives an addition product with little or no barrier. Loss of H_{2} leads first to cyclic- $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ carboranes and then through two methyleneborane intermediates to the known nido $-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$. Two pathways exist for loss of H_{2} from nido- $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$, one synchronous and the other nonsynchronous, to the final product, $1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$. With respect to $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$, four activation barriers exist in the range $45-50 \mathrm{kcal} / \mathrm{mol}$.

Introduction

The first evidence for carboranes was obtained in 1953 when Landesman ${ }^{1}$ ignited mixtures of diborane and acetylene with a hot wire. The yield was less than 1%, but on the basis of positive-ion mass spectra, he identified fragments containing two carbons and three borons, two carbons and four borons, and two carbons and five borons. It was later found ${ }^{2}$ that subjecting mixtures of $\mathrm{B}_{5} \mathrm{H}_{9}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ to a silent electrical discharge produced these same compounds but in better yields. On the basis of IR, NMR, and mass spectrometry, a closed polyhedron was suggested as the structure. ${ }^{1}$

The lower carboranes, $\mathrm{C}_{2} \mathrm{~B}_{5} \mathrm{H}_{7}$ and smaller, are usually prepared by reaction between lower boron hydrides and acetylenes. ${ }^{3-8}$ Complex mixtures of alkylboranes, carboranes, and alkylcarboranes may be obtained, with the relative amounts of each dependent on the borane $\left(\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{~B}_{4} \mathrm{H}_{10}\right.$, or $\left.\mathrm{B}_{5} \mathrm{H}_{9}\right)$, the acetylene ($\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{HR}$, or $\left.\mathrm{C}_{2} \mathrm{R}_{2}\right)$, and the reaction conditions. Generally high-energy conditions ${ }^{4} 6$ (e.g. silent electrical discharge or high temperatures) favor closo-carboranes, while lowenergy conditions ${ }^{4-8}$ (e.g. moderate heat) favor alkylboranes and nido-carboranes. For example, the reaction between diborane and acetylene gives ethyldiboranes if carried out at $85^{\circ} \mathrm{C}^{4}$ and a mixture of closo-carboranes if the gas mixture is subjected to an ac discharge. ${ }^{3}$

The best-known and well-studied reaction between a boron hydride and an unsaturated organic molecule is the hydroboration reaction. ${ }^{10-13}$ Theoretical calculations of the type HBR_{2} $+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{R}_{2} \mathrm{~B}-\mathrm{C}_{2} \mathrm{H}_{5}$ have been reported by several authors. ${ }^{10-13}$

[^0]A π-complex has been found as an intermediate in the reaction at the semiempirical level ${ }^{10}$ or at the HF level of ab initio theory. ${ }^{11-13}$ When BH_{3} is the reactant and electron correlation is included, the barrier for further reaction from the π-complex disappears, ${ }^{14}$ while for alkylboranes (HBR_{2}), a π-complex exists at both the HF and post-HF levels. ${ }^{12}$ The π-complex is much tighter and the transition state from the π-complex much "earlier" at the post-HF level compared to the HF level. ${ }^{12}$ Variations on the hydroboration reaction have been reported where the inorganic reactant is $\mathrm{B}_{2} \mathrm{H}_{6}$ and $\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{BH}_{3}$. In the reactions of complexed BH_{3}, the BH_{3} moiety must undergo partial dissociation before reaction can occur. These reactions can be viewed as either single steps ($\mathrm{R} \cdot \mathrm{BH}_{3} \rightarrow \mathrm{R}+\mathrm{BH}_{3} ; \mathrm{BH}_{3}$ $+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~B}-\mathrm{C}_{2} \mathrm{H}_{5}$) or two-step reactions ($\mathrm{R} \cdot \mathrm{BH}_{3} \rightarrow \mathrm{R}+$ $\left.\mathrm{BH}_{3} ; \mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~B}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$. At lower temperatures, the single-step reaction has a lower free energy of activation, but at higher temperatures, the two-step mechanism is preferred. ${ }^{12}$
The reactions of BH_{3} or $\mathrm{B}_{2} \mathrm{H}_{6}$ with alkynes have also been studied. ${ }^{10.12}$ Houk and co-workers ${ }^{12}$ found that for BH_{3} addition to alkynes, the π-complex was weaker and the activation barrier larger compared to addition to alkenes. This observation is in keeping with expectations based on a higher IP for $\mathrm{C}_{2} \mathrm{H}_{2}$ relative to $\mathrm{C}_{2} \mathrm{H}_{4}(11.40$ versus 10.51 eV) and with the experimental observation that double bonds are more reactive to BH_{3} than triple bonds. ${ }^{12}$
Considerable effort has been expended to understand rearrangements in carboranes. ${ }^{15-26}$ Carboranes formed from the

[^1]reaction of acetylene with boron hydrides often have directly bonded carbon atoms which are kinetic products and rearrange to isomeric forms with nonadjacent carbons when subjected to elevated temperatures. Two well-known carborane examples are $1,2-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}{ }^{26 \mathrm{~b} . \mathrm{c}}$ and $1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}{ }^{27-29}$ The former rearranges to $1,6-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ at $300^{\circ} \mathrm{C}$ while the latter rearranges first to $1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$ at $450^{\circ} \mathrm{C}$ and then to $1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$ at 620 ${ }^{\circ} \mathrm{C}$. Computational studies suggest that rearrangement in $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ takes place via a benzvalene-like intermediate with an activation barrier of $35 \mathrm{kcal} / \mathrm{mol}$. ${ }^{26 b . c}$ In a novel departure from this mechanism, Schleyer and co-workers ${ }^{30}$ have considered an isomer of $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ which could play a role in carborane combustion. The new $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ isomer is based upon the $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ pentagonal bipyramid with a BH_{2} group replacing a hydrogen (i.e. $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{4}-\mathrm{BH}_{2}$).

In $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, several mechanisms are possible. From arrangements in a series of tethered compounds, Wu and Jones ${ }^{27}$ have deduced that the triangle-face rotation is the most likely mechanism, a conclusion which is supported by MNDO calculations in the isoelectronic $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$ system. ${ }^{31}$ Edvenson and Gaines ${ }^{28}$ proposed an open-cage transition state for the carborane rearrangement and demonstrated that other poroposed mechanisms were special cases of this closo \rightarrow nido \rightarrow closo mechanism. Most recently, Wales ${ }^{29}$ studied the rearrangement at the STO-3G level. He found that lower-symmetry transition states were perferred, thereby effectively avoiding symmetryforbidden pathways of higher symmetry.
Two overlapping general types of mechanism in closocarboranes can be identified: the nonclassical \rightarrow classical \rightarrow nonclassical mechanism ${ }^{32 a}$ and the closo \rightarrow nido \rightarrow closo mechanism. ${ }^{32 b}$ The transition state/intermediate in the nonclassical \rightarrow classical \rightarrow nonclassical mechanism has a smaller number of multicenter bonds and a larger number of vacancies on boron atoms, while the transition state/intermediate in the closo \rightarrow nido \rightarrow closo mechanism adopts the geometry of a recognizable nido-carborane-usually a more open structure. The distinction between the two groups is not precise, especially since either mechanism may involve the Diamond-SquareDiamond (DSD) rearrangement ${ }^{1}$ or a series of concerted DSD rearrangements. As an example of the latter mechanism, recent ab initio calculations were presented which demonstrated a lowenergy pathway through a nido structure for rearrangement in $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}{ }^{33}$
(19) Mingos, D. M. P.; Wales, D. J. Skeletal Rearrangements in Clusters: Some New Theoretical Insights Involving Lipscomb's Diamond-Square-Diamond Mechanism. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; pp 143-163.
(20) Wales, D. J.; Bone, R. G. A. J. Am. Chem. Soc. 1992, II4, 5399.
(21) For a detailed example of rearrangement in nido- $\mathrm{B}_{6} \mathrm{H}_{10}$ see: Mebel, A. M.; Morokuma, K.; Musaev, D. G. J. Am. Chem. Soc. 1994, 116, 3932.
(22) For related rearrangements of boron hydrides see: (a) Gaines, D. F.; Coons, D. E.; Heppert, J. A. The Elucidation of Cluster Rearrangement Mechanisms Using Isotopically Labeled Boron Hydrides. In Molecular Structure and Energetics. Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A. G., Williams, R. E., Eds.; VCH: New York, 1988; pp 91-104. (b) Greenwoord, N. N. Chem. Soc. Rev. 1992, 49.
(23) Williams, R. E. Chem. Rev. 1992, 92, 177.
(24) Stíbr, B. Chem. Rev. 1992, 92, 225.
(25) Heřmánek, S. Chem. Rev. 1992, 92, 325.
(26) (a) McKee, M. L. THEOCHEM 1988, 168, 191. (b) McKee, M. L. J. Am. Chem. Soc. 1988, I10, 5317. (c) McKee, M. L. J. Am. Chem. Soc. 1992, 114, 879.
(27) Wu, S.; Jones, M. J. Am. Chem. Soc. 1989, I11, 5373.
(28) Edvenson, G. M.; Gaines, D. F. Inorg. Chem. 1990, 29, 1210.
(29) Wales, D. J. J. Am. Chem. Soc. 1993, lI5, 1557.
(30) Slutsky, V. G.; Hofmann, M.; Schleyer, P. v. R. Mendeleev Commun. 1994, 12.
(31) Dewar, M. J. S.; McKee, M. L. Inorg. Chem. 1978, I7, 1569.
(32) (a) Graham, G. D.; Marynick, D. S.; Lipscomb, W. N. J. Am. Chem. Soc. 1980, IO2, 2939. (b) Wong, H. S.; Lipscomb, W. N. Inorg. Chem. 1975, 14, 1350.

From a computational study of rearrangement mechanisms in $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}{ }^{26 a}$ and $\mathrm{C}_{2} \mathrm{~B}_{5} \mathrm{H}_{7},{ }^{26 \mathrm{~b}, \mathrm{c}}$ the concerted double diamond-square-diamond mechanism (or local bond rotation) was considered to be a low-energy pathway. Some rearrangement mechanisms have high activation barriers because they involve a HOMO-LUMO crossing. ${ }^{34}$ Using graph theory ${ }^{16}$ Tensor Surface Harmonics (TSH) theory, ${ }^{18-20}$ rules have been developed for predicting when crossings will occur in the rearrangement of carboranes.
Our understanding of rearrangements in the carboranes is substantially more advanced than our understanding of their formation. The two routes depicted in eqs 1 and 2 for formation

$$
\begin{gather*}
\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{\text { (silent electric discharge) }} 1-2 \% \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5} \tag{1}\\
\mathrm{~B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{\Delta\left(50^{\circ} \mathrm{C}\right)} 1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}, 2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}, \mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{7} \tag{2}
\end{gather*}
$$

of carborane represent very different reaction conditions. ${ }^{35}$ The silent electric discharge in eq 1 generates a plasma which yields very reactive species and locally high thermal energies which should favor fragmentation pathways over condensation pathways. Equation 2, on the other hand, takes place with mild heating.

The first likely step in either reaction is the decomposition of $\mathrm{B}_{4} \mathrm{H}_{10}$ to give $\mathrm{B}_{3} \mathrm{H}_{7}$ (eq 3a) or $\mathrm{B}_{4} \mathrm{H}_{8}$ (eq 3b) followed by

$$
\begin{gather*}
\mathrm{B}_{4} \mathrm{H}_{10} \rightarrow \mathrm{~B}_{3} \mathrm{H}_{7}+\mathrm{BH}_{3} \tag{3a}\\
\mathrm{~B}_{4} \mathrm{H}_{10} \rightarrow \mathrm{~B}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \tag{3b}
\end{gather*}
$$

addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ to the reactive boron hydride. The present work will consider the addition of $\mathrm{B}_{3} \mathrm{H}_{7}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$, while a subsequent paper will deal with reactions of $\mathrm{B}_{4} \mathrm{H}_{8}$ with $\mathrm{C}_{2} \mathrm{H}_{2}$. The most straightforward mechanism would involve an addition complex followed by the successive loss of two hydrogen molecules (eqs 4-6). The details of this mechanism will be considered in this work.

$$
\begin{align*}
& \mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{9} \tag{4}\\
& \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{9} \rightarrow \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}+\mathrm{H}_{2} \tag{5}\\
& \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7} \rightarrow \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}+\mathrm{H}_{2} \tag{6}
\end{align*}
$$

The actual mechanism of carborane formation, no doubt, involves a complex series of competing reactions. This work will follow one possible thread from reactants to products. Except for the addition of acetylene, all reactions considered will be unimolecular reactions and all products will have one $\mathrm{C}-\mathrm{C}$ bond.
An interesting isoelectronic variation of eq 4 is shown in eq 7 , which produces a μ-aminodiborane(6) derivative in what must

$$
\begin{gather*}
\mathrm{THF} \cdot \mathrm{~B}_{3} \mathrm{H}_{7}+(\mathrm{R}=t \mathrm{Bu}) \rightarrow \mu-(\mathrm{HRN}) \mathrm{B}_{2} \mathrm{H}_{4} \mathrm{R} \tag{7}\\
\mathrm{RB} \equiv \mathrm{NR}
\end{gather*}
$$

be a multistep reaction. ${ }^{36}$ The reaction product in eq 7 has no analogy in the $\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2}$ reaction, which is probably because the reaction takes place in THF solution at room temperature,

[^2]conditions far different from those common in carborane-forming reactions. Nevertheless, inorganic acetylene analogs may prove important in studying carborane-forming reactions because the intermediates in the inorganic case may have greater stability (compared to reaction with acetylene) which might allow their characterization.

Method

All geometries were optimized at the MP2/6-31G(d) level. ${ }^{37}$ Vibrational frequencies were determined at that level to determine the nature of the potential energy surface and to make zero-point corrections (frequencies weighted by a 0.95 factor). Single-point calculations were made at the MP4/6-31G(d) and MP2/6-311+G(d,p) levels and combined ${ }^{38}$ to estimated relative energies at the $[\mathrm{MP} 4 / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})]$ level, which, when zero-point corrections have been added, will constitute the "standard" level. All MP2 and MP4 calculations were made with the "frozen-core" approximation.

Heat capacities and entropy corrections were made using unscaled frequencies and standard statistical procedures ${ }^{39}$ to determine enthalpies and free energies at 298 K . Free energies at 500 K were estimated from eq 8 .

$$
\begin{equation*}
\Delta G(500 \mathrm{~K}) \approx \Delta H(298 \mathrm{~K})-500 \cdot \Delta S(298 \mathrm{~K}) \tag{8}
\end{equation*}
$$

In cases where the reactant and product from a given transition structure were not clear, an IRC was constructed ${ }^{40}$ at the MP2/6-31G(d) level. Molecular plots are given in Figure 1. A table of total energies (hartrees) and zero-point energies ($\mathrm{kcal} / \mathrm{mol}$) as well as Z-matrices of all structures are provided as supporting information. In addition, vibrational frequencies and intensities of several of the stable carborane structures are also provided as supporting information in the hopes that it may aid in the spectral identification.

A boldface notation system is used for some of the species in the figures, tables, and text to aid in identification. For example, the bold notation TS2/3 refers to the transition state between structures 2 and 3, while the notation $\mathbf{T S} \mathbf{2} / \mathbf{4}+\mathbf{H}_{\mathbf{2}}$ refers to the transition state for loss of H_{2} from 2 to form 4. Relative energies ($\mathrm{kcal} / \mathrm{mol}$) are presented in Table 1 with respect to the top entry in each section of structures. In Table 2, enthalpies at 298 K and free energies at 298 and 500 K are tabulated relative to $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$ which is given a value of zero. A potential energy diagram of enthalpies at 298 K is given in Figure 2 for the reaction path from $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$ to the products $1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ $+\mathrm{BH}_{3}+2 \mathrm{H}_{2}$.

Results and Discussion

Addition of BH_{3} and $\mathrm{B}_{2} \mathrm{H}_{6}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$. A π-complex (6a) is calculated to be $3.3 \mathrm{kcal} / \mathrm{mol}$ more stable than separated BH_{3} plus $\mathrm{C}_{2} \mathrm{H}_{2}$ and has a rotational barrier of less than $0.1 \mathrm{kcal} / \mathrm{mol}$ (6b). The transition state for hydrogen migration (TS6/7) is predicted to be very early with a forming $\mathrm{C}-\mathrm{H}$ hydrogen distance of $1.714 \AA$ and an activation barrier of $2.0 \mathrm{kcal} / \mathrm{mol}$ with respect to the π-complex (6a). The product (7) is 43.6 $\mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$.
The addition of $\mathrm{B}_{2} \mathrm{H}_{6}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$ requires a disruption of a $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge before a π-complex (8 a) can form. At the MP2/6-31G(d) level, the transition state TS1 $+\mathbf{C}_{2} \mathbf{H}_{2} / \mathbf{8}(0.3 \mathrm{kcal} /$

[^3]mol above $8 \mathbf{a}$) is characterized by very long $\mathrm{C} \equiv \mathrm{C}$ to boron distances (2.000 and $2.014 \AA$). The C_{1} minimum ($8 \mathbf{a}$) for the π-complex is slightly more stable than a symmetrical structure (8 b) with the $\mathrm{C}-\mathrm{C}$ bond perpendicular to the $\mathrm{B}-\mathrm{B}$ axis. However, the energetic advantage of the C_{1} structure over the C_{s} structure disappears after zero-point corrections are added. In fact, the existence of the π-complex is called into question since the transition state for forming the complex ($\mathbf{T S} 1+\mathrm{C}_{2} \mathrm{H}_{2} /$ 8) is predicted to have a lower energy at our standard level than the π-complex itself ($8 \mathbf{8 a}$). The transition state is $2.3 \mathrm{kcal} /$ mol higher for migrating a hydrogen to carbon (TS8/9) than the π-complex $8 \mathbf{a}\left(26.8 \mathrm{kcal} / \mathrm{mol}\right.$ with respect to $\mathrm{C}_{2} \mathrm{H}_{2}$ plus $\mathrm{B}_{2} \mathrm{H}_{6}$) and closely resembles the corresponding $\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{BH}_{3}$ transition state (TS6/7) with another BH_{3} unit complexed to one $\mathrm{B}-\mathrm{H}$ hydrogen. The product, a vinyl-substituted diborane (9), is predicted to be $29.7 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{B}_{2} \mathrm{H}_{6}+$ $\mathrm{C}_{2} \mathrm{H}_{2}$.

For reference, the energy of $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{BH}_{3}$ is included in Table 1 which allows the BH_{3} binding energy to be compared at various levels. At our standard level, the $\mathrm{B}_{2} \mathrm{H}_{6}$ binding energy of $35.6 \mathrm{kcal} / \mathrm{mol}$ is in good agreement with experiment (36.5 $\pm 2.5 \mathrm{kcal} / \mathrm{mol})^{41}$ and previous experimental studies. ${ }^{42}$

While $\mathrm{B}_{2} \mathrm{H}_{6}$ is predicted to react with $\mathrm{C}_{2} \mathrm{H}_{2}$ via TS8/9 at lower temperature, at 298 K , the two-step mechanism becomes competitive, namely:

two-step	$\Delta G^{\ddagger}(298 \mathrm{~K})$
$\mathrm{B}_{2} \mathrm{H}_{6} \rightarrow 2 \mathrm{BH}_{3}$	26.7
$2 \mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$	$7.7\left(\mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{TS} 6 / 7\right)$
$\mathrm{H}_{2} \mathrm{BCH}=\mathrm{CH}_{2}+\mathrm{BH}_{3}$	
total	34.4
one-step	
$\begin{gathered} \mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \overrightarrow{C l}_{2} \\ \mathrm{H}_{2} \mathrm{~B}_{2} \mathrm{CH}=\mathrm{CH}_{2} \end{gathered}$	$35.5\left(\mathrm{~B}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathbf{T S 8 / 9}\right)$

Calculations on isolated $\mathrm{B}_{3} \mathrm{H}_{7}^{43}$ were made to determine relevant unimolecular rearrangement pathways. The most stable form of free $\mathrm{B}_{3} \mathrm{H}_{7}$ is the double-bridged (styx-210244) form (2) followed by the styx-1103 form (3) which is $3.3 \mathrm{kcal} / \mathrm{mol}$ higher in energy (see Figure 1). A transition state connecting the two structures (TS2/3) has an activation barrier of $5.6 \mathrm{kcal} / \mathrm{mol}$.

The lowest activation barrier ($43.3 \mathrm{kcal} / \mathrm{mol}$) for elimination of H_{2} from 2 involves the simultaneous loss of two hydrogen bridges (TS2/4+ \mathbf{H}_{2}). A direct pathway for H_{2} loss from the styx-2102 structure to the $\mathrm{B}_{3} \mathrm{H}_{5}$ global minimum (a threemembered ring with two bridging hydrogens) is blocked by a HOMO-LUMO crossing. In a paper comparing $\mathrm{B}_{3} \mathrm{H}_{n}$ species, Korkin, McKee, and Schleyer ${ }^{45}$ have calculated that $\mathbf{4}$ is 22.3 $\mathrm{kcal} / \mathrm{mol}$ above the global minimum at the $\mathrm{QCISD}(\mathrm{T}) / 6-311+\mathrm{G}-$ (d,p) level. While it is likely that the $\mathrm{B}_{3} \mathrm{H}_{5}(4)$ will react without activation with $\mathrm{C}_{2} \mathrm{H}_{2}$ to form $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ (donor-acceptor interaction between $\mathrm{C}_{2} \mathrm{H}_{2} \pi$-orbital and symmetric combination of BH_{2} empty orbitals), such a pathway is not likely due to the additional activation required to form $\mathrm{B}_{3} \mathrm{H}_{5}$ from $\mathrm{B}_{3} \mathrm{H}_{7}$.

[^4]

Figure 1. Selected geometric parameters of species optimized at the MP2/6-31G(d) level. The same boldface notations are used in the tables and text. Symmetry point group designations are given as well as the number of imaginary frequencies at the MP2/6-31G(d) level (in parentheses).
$\mathbf{B}_{4} \mathbf{H}_{10} \rightarrow \mathbf{B}_{3} \mathbf{H}_{7}+\mathbf{B H}_{3}$. The transition state for $\mathrm{B}_{4} \mathrm{H}_{10}(\mathbf{5}) \rightarrow$ $\mathrm{B}_{3} \mathrm{H}_{7}(\mathbf{2})+\mathrm{BH}_{3} \mathbf{T S 5} / \mathbf{2}+\mathbf{B H}_{3}$ (located at the MP2(FC)/6-31G(d) level) is essentially identical to the structure calculated previously ${ }^{46}$ at the MP2(FULL)/6-31G(d) level. At our standard level, the activation barrier is $37.6 \mathrm{kcal} / \mathrm{mol}$ which is very similar to the value of $35.1 \mathrm{kcal} / \mathrm{mol}$ calculated at the [MP4/6-311G-(d,p)]+ZPC/6-31G(d) level. ${ }^{46}$
$\mathbf{B}_{3} \mathbf{H}_{7}+\mathbf{C}_{2} \mathbf{H}_{2}$. Four different π-complex structures were considered between $\mathrm{B}_{3} \mathrm{H}_{7}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$. The double-bridged (2102) $\mathrm{B}_{3} \mathrm{H}_{7}$ (2) forms a weak π-complex with $\mathrm{C}_{2} \mathrm{H}_{2}$ (10a), bound by $1.6 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathrm{B}_{3} \mathrm{H}_{7}(\mathbf{2})+\mathrm{BH}_{3}$. The higherenergy single-bridged (1103) $\mathrm{B}_{3} \mathrm{H}_{7}$ (3) forms a slightly stronger (binding energy is $2.3 \mathrm{kcal} / \mathrm{mol}$ with respect to (1103) $\mathrm{B}_{3} \mathrm{H}_{7}$ (3) $+\mathrm{C}_{2} \mathrm{H}_{2}$) π-complex with $\mathrm{C}_{2} \mathrm{H}_{2}(\mathbf{1 0 b})$ which is $2.6 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathbf{1 0 a}$. Rotating the $\mathrm{C}_{2} \mathrm{H}_{2}$ moiety in $\mathbf{1 0 b}$ by 90° yields 10 c , a structure with nearly the same energy as $\mathbf{1 0 b}$ but having one imaginary frequency. ${ }^{47}$ When $\mathbf{1 0} \mathrm{c}$ was allowed to optimize without symmetry constraints, a new structure, 10d, was obtained which was quite different from $10 \mathbf{a}-\mathbf{c}$. One of the interesting characteristics is the nearly full conversion of the acetylenic group into an olefinic group. The best description of changes is by analogy to the addition of $\mathrm{B}-\mathrm{H}$ across the $\mathrm{C} \equiv \mathrm{C}$ triple bond (Figure 3). The in-plane π component of acetylene donates charge into the vacant p-orbital on boron while the in-plane π^{*} component accepts charge from the $\mathrm{BH} \sigma$ orbital (Figure 3a). In analogy with BH_{3}, the nearly vacant orbital on boron of $\mathrm{B}_{3} \mathrm{H}_{7}$ accepts charge from acetylene while the occupied BBB three-center bond plays the role of a BH σ orbital and donates charge into the π^{*} orbital of acetylene (Figure 3b). In the rearrangement, there is a concurrent transformation of a BH terminal hydrogen into a BH bridging hydrogen. Thus, as boron adds to one side of the triple bond, the three-center BBB bond is converted to a three-center BBC bond. The addition product $(\mathbf{1 0 d})$ is $6.6 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{B}_{3} \mathrm{H}_{7}$ plus $\mathrm{C}_{2} \mathrm{H}_{2}$.

A transition state of C_{1} symmetry ($\mathbf{T S} \mathbf{S 0 d} / \mathbf{1 1}$) was located for hydrogen migration from boron to carbon in the π-complex. Even though the transition state resembles $\mathbf{1 0 b} / \mathbf{1 0 c}$, the reactant in the transformation must be $\mathbf{1 0 d}$ on the MP2/6-31G(d) potential energy surface, because the energy of the transition state (TS10d/11) at the MP2/6-31G(d) level is below the energy of all other π-complexes (Table 1). With respect to 10d, the
activation barrier at the standard level is $6.4 \mathrm{kcal} / \mathrm{mol}$. The product of reaction is 11a, a vinyl derivative of $\mathrm{B}_{3} \mathrm{H}_{7} \mathbf{3}$, which is $32.3 \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathbf{1 0 d}$. Since $\mathrm{B}_{3} \mathrm{H}_{7} \mathbf{2}$ is lower in energy than $\mathrm{B}_{3} \mathrm{H}_{7} \mathbf{3}$ by $3.3 \mathrm{kcal} / \mathrm{mol}$, it comes as no surprise that the vinyl derivative of $\mathrm{B}_{3} \mathrm{H}_{7} \mathbf{2}(\mathbf{1 1 b})$ is $1.1 \mathrm{kcal} /$ mol lower in energy than 11a. Given the small activation barrier for conversion of $\mathbf{3} \rightarrow \mathbf{2}(2.3 \mathrm{kcal} / \mathrm{mol})$, the rearrangement 11a $\rightarrow \mathbf{1 1 b}$ should be facile.

When a vinyl group is substituted for a basel terminal hydrogen in 3, extensive geometry reorganization occurs to give 11 c , which is $4.7 \mathrm{kcal} / \mathrm{mol}$ more stable than 11 a and $3.6 \mathrm{kcal} /$ mol more stable than 11b. The $\mathrm{C}=\mathrm{C} \pi$ bond is interacting extensively with boron in 11c as shown by the longer $\mathrm{C}=\mathrm{C}$ bond $(1.436 \AA)$ compared to $11 \mathbf{a}(1.352 \AA)$ or 11b $(1.348 \AA)$. Rearrangement barriers among the 11a, 11b, and 11c structures should be small.

From 11c, there is only a small activation barrier ($3.0 \mathrm{kcal} /$ mol) for the migration of a bridging hydrogen to the methylene carbon (TS11c/11d), forming an exocyclic methyl group. This methyl-substituted nido-carborane (11d) is $13.0 \mathrm{kcal} / \mathrm{mol}$ more stable than 11c and, in fact, is the global minimum on the $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{9}$ potential energy surface.

Experimentally, it is known ${ }^{35}$ that $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$ yields methylated carboranes including $2-\mathrm{CH}_{3}-2,3,4-\mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{6}$. A possible mechanism for formation of this product would be eqs 9 and 10 .

$$
\begin{array}{r}
\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CB}_{3} \mathrm{H}_{6}(\mathbf{1 1 d}) \\
\mathrm{CH}_{3}-\mathrm{CB}_{3} \mathrm{H}_{6}(\mathbf{1 1 d})+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{8} \rightarrow \\
\mathrm{CH}_{3}-\mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{6}+\mathrm{H}_{2} \tag{10}
\end{array}
$$

[^5]Table 1. Relative Energies, Enthalpies, and Free Energies (kcal/mol) of Various Species

	relative energies ${ }^{\text {a }}$					thermodynamic values (298 K) ${ }^{\text {d }}$	
	MP2/a	MP4/a	MP2/b	$[\mathrm{MP4} / \mathrm{b}]^{\text {b }}$	$+\mathrm{ZPC}{ }^{\text {c }}$	ΔH	ΔG
$\mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$6 \mathbf{a}$	-7.3	-6.5	-7.4	-6.6	-3.3	-3.9	4.1
6b	-7.1	-6.3	-7.3	-6.5	-3.3	-4.3	4.7
TS6/7	-5.0	-4.7	-5.3	-5.0	-1.3	-2.7	7.1
7	-50.8	-51.5	-49.6	-50.3	-43.6	-44.8	-35.5
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathbf{1})+\mathrm{C}_{2} \mathrm{H}_{2}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TS1 $+\mathrm{C}_{2} \mathrm{H}_{2} / 8$	23.5	24.3	23.2	24.0	24.3	24.3	32.4
8a	23.2	24.2	23.0	24.0	24.5	24.6	32.5
8b	23.3	24.2	23.2	24.1	24.5	24.1	33.3
TS8/9	25.6	26.1	25.5	26.0	26.8	26.3	35.5
9	-45.4	-36.3	-44.4	-35.3	-29.7	-30.5	-20.7
$2 \mathrm{BH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$	40.4	40.5	42.1	42.2	35.6	37.0	26.7
$\mathrm{B}_{3} \mathrm{H}_{7}$ (2)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TS2/3	7.3	7.0	7.1	6.8	5.6	5.6	5.7
$\mathrm{B}_{3} \mathrm{H}_{7}$ (3)	4.4	4.2	4.4	4.2	3.3	3.5	3.6
TS2/4 $+\mathrm{H}_{2}$	53.3	51.7	50.7	49.1	43.3	44.3	42.4
$\mathrm{B}_{3} \mathrm{H}_{5}(\mathbf{4})+\mathrm{H}_{2}$	47.4	45.0	48.8	46.4	37.3	39.3	29.5
$\mathrm{B}_{4} \mathrm{H}_{10}(5)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TS5/2+ BH_{3}	45.4	43.2	43.5	41.3	37.6	38.2	36.3
$\mathrm{B}_{3} \mathrm{H}_{7}(\mathbf{2})+\mathrm{BH}_{3}$	40.1	38.2	41.8	39.9	34.4	35.6	23.5
$\mathrm{B}_{3} \mathrm{H}_{7}(\mathbf{2})+\mathrm{C}_{2} \mathrm{H}_{2}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
π-complex (10a)	-2.1	-1.9	-2.3	-2.1	-1.6	-0.5	4.6
π-complex (10b)	-3.3	-1.2	-3.6	-1.5	1.0	1.2	11.4
π-complex (10c)	-3.3	-1.5	-3.5	-1.7	0.1	0.6	11.4
π-complex (10d)	-12.6	-11.0	-12.7	-11.1	-6.6	-7.3	3.9
TS10d/11	-4.6	-2.0	-5.2	-2.6	-0.2	-1.0	10.5
11a	-45.0	-45.4	-43.7	-44.1	-38.9	-39.4	-29.2
11b	-46.1	-46.3	-45.3	-45.5	-40.0	-40.7	-29.8
11c	-55.9	-51.9	-54.5	-50.5	-43.6	-45.0	-32.5
TS11c/11d	-50.7	-46.9	-50.2	-46.4	-40.6	-42.1	-29.4
11d	-68.7	-66.3	-66.7	-64.3	-56.6	-57.8	-45.8
TS10d/12a	-11.7	-11.2	-12.3	-11.8	-7.6	-8.6	2.9
12a	-44.5	-44.5	-45.2	-45.2	-39.3	-40.5	-28.5
12b	-43.9	-42.7	-46.6	-45.4	-39.7	-41.2	-28.2
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{6}(13)+\mathrm{BH}_{3}$	-7.7	-8.0	-4.5	-4.8	-5.9	-5.1	-6.7
TS12a/14+ H_{2}	-22.2	-21.3	-26.6	-25.7	-21.8	-23.3	-10.7
$14+\mathrm{H}_{2}$	-24.1	-25.0	-23.9	-24.8	-25.4	-25.3	-22.3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TS14/15	18.3	17.4	19.3	18.4	15.6	16.1	15.0
15	-11.8	-10.2	-10.1	-8.5	-8.8	-9.0	-8.3
$\mathrm{B}_{3} \mathrm{H}_{5}(4)+\mathrm{C}_{2} \mathrm{H}_{2}$	71.5	69.9	72.7	71.1	62.6	64.5	51.7
TS15/16a	40.8	40.5	39.6	39.3	37.5	37.6	37.2
16a	-12.3	-8.3	-9.8	-5.8	-6.0	-6.0	-5.8
TS16a/16a	-3.8	1.7	-4.7	0.8	-0.4	-0.9	0.4
TS16a/16b	44.0	42.6	43.3	41.9	38.9	39.2	39.6
16b	-7.5	-3.9	-5.0	-1.4	-1.9	-1.8	-1.8
TS16b/16b	7.0	10.2	9.1	12.3	9.4	9.8	9.3
TS16b/17	34.5	38.4	33.8	37.7	34.3	34.9	34.0
17	-28.5	-22.6	-26.2	-20.3	-19.3	-19.9	-18.4
TS17/18+ H_{2}	57.9	64.2	55.9	62.2	58.4	58.4	59.0
TS17/20 $+\mathrm{H}_{2}$	41.8	44.9	40.2	43.3	39.2	39.5	39.4
$18+\mathrm{H}_{2}$	27.0	33.4	29.9	36.3	28.0	29.5	20.8
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TS18/19	0.3	0.6	0.4	0.7	0.2	-0.5	1.1
19	-6.9	-9.7	-6.8	-9.6	-8.3	-8.5	-8.2
TS19/20	-5.8	-8.2	-5.9	-8.3	-7.3	-7.9	-7.0
20	-23.4	-23.9	-22.5	-23.0	-21.6	-22.1	-21.2
21	20.3	12.4	19.1	11.2	11.8	11.0	12.4

${ }^{a}$ Basis set a is $6-31 \mathrm{G}(\mathrm{d})$. Basis set b is $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p}) .{ }^{b}$ Values computed with additivity approximation. $\Delta E[\mathrm{MP} 4 / \mathrm{b}]=\Delta E(\mathrm{MP} 4 / \mathrm{a})+\Delta E(\mathrm{MP} 2 /$ b) $-\Delta E\left(\mathrm{MP} 2 /\right.$ a). ${ }^{\text {c }}$ Zero-point correction made by weighting zero-point energies by a 0.95 factor. ${ }^{d}$ Thermodynamic corrections have been computed with MP2/6-31G(d) vibrational frequencies.

Thus, the reactive species 11 d might be trapped by the addition of a second molecule of acetylene.

Turning back to addition products, a second transition state (TS10d/12a) was located for transformation of 10d into an open cyclic system (12a). As the transition state is approached a $3 \mathrm{c}-2 \mathrm{e} \mathrm{BBC}$ bond is converted into a BC bond, while after the transition state, a terminal BH is converted into a BH bridge
(Figure 4). A second cyclic form (12b) was located which featured an interesting pentacoordinate boron. In this regard it is interesting to note that a structure of $\mathrm{B}_{3} \mathrm{H}_{9}$ with a very similar pentacoordinate boron was calculated by Schaefer and coworkers ${ }^{48}$ and found to be only $3.5 \mathrm{kcal} / \mathrm{mol}$ higher than the more conventional $C_{3 v}$ structure (Figure 5). In fact, $\mathbf{1 2 b}$ is related to the higher-energy form of $\mathrm{B}_{3} \mathrm{H}_{9}$ by replacing two

Table 2. Enthalpies and Free energies ($\mathrm{kcal} / \mathrm{mol}$) Relative to $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$

	relative thermodynamic values		
	ΔH (298 K)	$\Delta G(298 \mathrm{~K})$	$\Delta G(500 \mathrm{~K})$
$\mathrm{B}_{4} \mathrm{H}_{10}(5)+\mathrm{C}_{2} \mathrm{H}_{2}$	0.0	0.0	0.0
TS5/2 $+\mathbf{B H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$	38.2	36.3	35.0
$2+\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{BH}_{3}$	35.6	23.5	15.2
10a	35.1	28.1	23.2
10b	36.8	34.9	33.6
10c	36.2	34.9	33.7
10d	28.3	27.4	26.7
TS10d/11	34.6	34.0	33.5
11a	-3.8	-5.7	-7.0
11b	-5.1	-6.3	-7.2
11c	-9.4	-9.0	-8.8
TS11c/1d	-6.5	-5.9	-5.6
11d	-22.2	-22.3	-22.4
TS10d/12a	27.0	26.4	25.9
12a	-4.9	-5.0	-5.1
12b	-5.9	-4.7	-4.2
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{6}(13)+2 \mathrm{BH}_{3}$	30.5	16.8	7.4
TS12a/14+ \mathbf{H}_{2}	12.3	12.8	13.0
14, H_{2}	10.3	1.2	-5.1
TS2/4 $+\mathbf{H}_{\mathbf{2}}+\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{BH}_{3}$	79.8	65.8	43.3
$4+\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{BH}_{3}, \mathrm{H}_{2}$	74.8	52.9	38.0
TS14/15 $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	26.4	16.2	9.1
$15+\mathrm{BH}_{3}, \mathrm{H}_{2}$	1.3	-7.1	-12.9
TS15/16a $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	47.9	34.4	31.8
$\mathbf{1 6 a}+\mathrm{BH}_{3}, \mathrm{H}_{2}$	4.3	-4.6	-10.7
TS16a/16a $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	9.4	1.6	-3.8
TS16a/16b $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	49.5	40.8	34.7
$\mathbf{1 6 b}+\mathrm{BH}_{3}, \mathrm{H}_{2}$	8.5	-0.6	-6.9
TS16b/16b $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	20.1	10.5	3.7
TS16b/17 $+\mathrm{BH}_{3}, \mathrm{H}_{2}$	45.2	35.2	28.4
$17+\mathrm{BH}_{3}, \mathrm{H}_{2}$	-9.6	-17.2	-22.5
TS17/18 $+\mathrm{H}_{2}+\mathrm{BH}_{3}$	68.7	60.2	54.3
TS17/20 $+\mathbf{H}_{2}+\mathrm{BH}_{3}$	49.8	40.6	34.3
$18+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	39.8	22.0	9.7
TS18/19 $+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	39.3	23.1	11.9
$19+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	31.3	13.8	1.6
TS19/20 $+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	31.9	15.0	3.3
$20+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	17.7	0.8	-10.9
$21+\mathrm{BH}_{3}, 2 \mathrm{H}_{2}$	50.8	43.3	23.1

terminal BH bonds with the $-\mathrm{HC}=\mathrm{CH}-$ group. It should be noted that both 12a and $\mathbf{1 2 b}$ are minima (no imaginary frequencies); 12a is slightly lower in energy at the MP2/6-31G(d) level, while $\mathbf{1 2 b}$ is slightly lower at the standard level.

If $\mathbf{1 2 b}$ loses a BH_{3} from the pentacoordinate position, $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{6}$ (13) is obtained. While 13 is not the global minimum on the $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{6}$ potential energy surface (structures with a bridging methylene group are more stable), ${ }^{49.50}$ the structure considered here (13) is likely to be the initial product of BH_{3} loss from 12b and therefore allows an estimate to be made of the activation barrier for loss of $\mathrm{BH}_{3}(33.8 \mathrm{kcal} / \mathrm{mol})$.

The second obvious decomposition pathway from 12a or 12b is loss of H_{2}. While several mechanisms for H_{2} loss were considered from $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{9}(\mathbf{1 2 a} / \mathbf{1 2 b})$, only one transition state (TS12a/14+ $\mathbf{H}_{\mathbf{2}}$) could be located. In the transition state, the terminal and bridging hydrogens are eliminated from the same center with the concurrent formation of a BB bond in the product (14). The forward activation barrier for the process is $17.5 \mathrm{kcal} / \mathrm{mol}$, while the reverse barrier is only $3.6 \mathrm{kcal} / \mathrm{mol}$. The intermediate, $\mathbf{1 4}$, resembles a cis-substituted ethylene $\mathrm{RHC}=\mathrm{CHR}^{\prime}$, where $\mathrm{R}=\mathrm{BH}_{2}$ and $\mathrm{R}^{\prime}=\mathrm{BHBH}_{2}$. Another way

[^6]to view 14 is as a substituted diborane where a terminal hydrogen on each boron is replaced with a bridging $-\mathrm{CH}=\mathrm{CH}-$ HB -group. Such diborane derivatives are known when the bridging group is $-\mathrm{NR}-\mathrm{BH}-\mathrm{RN}-.{ }^{51}$ If one hydrogen bridge is broken, a transition state (TS14/15) is reached (activation barrier is $15.6 \mathrm{kcal} / \mathrm{mol}$) for formation of another cyclic system (15) which is $8.8 \mathrm{kcal} / \mathrm{mol}$ lower than 14 . Structure 15 is known as a ligand for iron complexes. ${ }^{52}$

A much more direct path to 15 would be $\mathrm{B}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ 15, which is $71.4 \mathrm{kcal} / \mathrm{mol}$ exothermic. However, the high activation barrier to form $\mathrm{B}_{3} \mathrm{H}_{5}$ from $\mathrm{B}_{3} \mathrm{H}_{7}\left(\mathbf{T S} 2 / 4+\mathbf{H}_{2}, 43.3\right.$ $\mathrm{kcal} / \mathrm{mol}$) precludes this pathway.

The only well-characterized structure on the $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ surface is the nido-carborane (17), where a carbon caps a square base of borons. ${ }^{53-56}$ While many attempts were made to connect 15 and 17 with a single transition state, none was successful. Instead, two intervening intermediates were located (16a, 16b). In the first phase, the $\mathrm{C}=\mathrm{C}$ double bond is converted into a $\mathrm{C}-\mathrm{C}$ single bond as the transition state (TS15/16a) is reached (CC $1.360 \AA(\mathbf{1 5}) \rightarrow 1.418 \AA$ (TS15/16a) $\rightarrow 1.481 \AA(\mathbf{1 6 a})$). From 16a, a transition state (TS16a/16b) is reached to a closely related intermediate (16b). The two structures, $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$, bare some resemblance to the global minimum on the $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ surface (methyleneborane ${ }^{50}$), found by Schleyer and co-workers ${ }^{57}$ and by Schaefer and co-workers, ${ }^{58}$ with two differences: the $\mathrm{C}=\mathrm{B}$ bond is saturated and a BH_{2} unit replaces a hydrogen on the methylene carbon.

The activation barrier for reaching TS16a/16b from 16a is quite large ($44.9 \mathrm{kcal} / \mathrm{mol}$). The motion required can be visualized as the exchange of the two substituents on the methylene carbon (H and BH_{2}) which takes place by a rotation of the methylene group.

The intermediates 16 a and $\mathbf{1 6 b}$ are both fluxtional as indicated by the low barriers for 16a $\rightarrow \mathbf{1 6 a}$ (through TS16a/16a; $5.6 \mathrm{kcal} / \mathrm{mol}$) and $\mathbf{1 6 b} \rightarrow \mathbf{1 6 b}$ (through TS16b/16b; $11.3 \mathrm{kcal} /$ mol). On the other hand, much higher barriers exist from 15 (through TS15/16a; $43.5 \mathrm{kca} / \mathrm{mol}$) and 16b (through TS16b/ $17 ; 36.2 \mathrm{kcal} / \mathrm{mol}$). The latter transition state (TS16b/17) is particularly interesting as it features a very short $C-B$ bond ($1.372 \AA$) with definite double bond character. All of the structures from 15 to 17 show a gradual increase in the $\mathrm{C}-\mathrm{C}$ distance $(15 \rightarrow$ TS15/16a $\rightarrow 16 \mathrm{a} \rightarrow 16 \mathrm{~b} \rightarrow$ TS16b/17 $\rightarrow 17$; $1.360 \rightarrow 1.418 \rightarrow 1.481 \rightarrow 1.510 \rightarrow 1.601 \rightarrow 1.608 \AA)$,

[^7] 128, 1 .
(52) (a) Sneddon, L. G.; Beer, D. C.; Grimes, R. N. J. Am. Chem. Soc. 1973, 95, 6623. (b) Spencer, J. T.; Grimes, R. N. Organometallics 1987, 6, 323.
(53) Onak, T. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, England, 1982; Vol. 1, pp 411-457.
(54) McKee, M. L. Inorg. Chem. 1988, 27, 4241.
(55) Bühl, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1992, 114, 477.
(56) Schleyer, P. v. R.; Gauss, J.; Bühl, M.; Greatrex, R.; Fox, M. A. J. Chem. Soc., Chem. Commun. 1993, 1766.
(57) (a) Budzelaar, P. H. M.; Schleyer, P. v. R.; Krogh-Jespersen, K. Angew. Chem., Int. Ed. Engl. 1984, 23, 825. (b) Budzelaar, P. H. M.; Krogh-Jespersen, K.; Clark, T.; Schleyer, P. v. R. J. Am. Chem. Soc. 1985, 107, 2773.
(58) Frenking, G.; Schaefer, H. F. Chem. Phys. Lett. 1984, 109, 521.

Figure 2. Potential energy diagram of enthalpies at 0 K with respect to $\mathrm{B}_{4} \mathrm{H}_{30}+\mathrm{C}_{2} \mathrm{H}_{2}$. The solid line indicates the preferred pathway for formation of 1,2-C2 $\mathrm{B}_{3} \mathrm{H}_{5}+\mathrm{BH}_{3}+2 \mathrm{H}_{2}$. The dotted line $\mathbf{1 0 d} \rightarrow \mathbf{1 1} \mathbf{c} \rightarrow \mathbf{1 1 d}$ is the hydroboration pathway to a methyl-substituted nido-carborane (11d).

Figure 3. Schematic diagram showing the analogous donor-acceptor (HOMO-LUMO) interactions in the addition of BH_{3} and $\mathrm{B}_{3} \mathrm{H}_{7}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$. (a) $\mathrm{B}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds are formed, and a $\mathrm{B}-\mathrm{H}$ bond is broken in the addition of BH_{3} to $\mathrm{HC} \equiv \mathrm{CH}$. (b) $\mathrm{A} \mathrm{B}-\mathrm{C}$ bond is formed and a $\mathrm{BBB} 3 \mathrm{c}-2 \mathrm{e}$ bond is converted into a $\mathrm{BBC} 3 \mathrm{c}-2 \mathrm{e}$ bond in the addition of $\mathrm{B}_{3} \mathrm{H}_{7}$ to $\mathrm{HC} \equiv \mathrm{CH}$.

Figure 4. Schematic diagram showing the transformation of 10 d into 12b. In the first step, a BBC $3 \mathrm{c}-2 \mathrm{e}$ bond is converted into a CB bond. In the second and third steps, terminal to bridge conversions are made.
indicating smooth transition from a $\mathrm{C}=\mathrm{C}$ double bond to one involving multicenter bonding.

As mentioned above, structure $\mathbf{1 7}$ is the only $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ carborane which has been characterized and several calculations on its structure and properties (e.g. IR spectra and chemical shifts) have been reported. ${ }^{54-56}$ At the MP2/6-31G(d)// MP2/6-31G(d)+ZPC level Bühl and Schleyer ${ }^{55}$ reported that $\mathbf{1 7}$ was $16.6 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{1 5}$, somewhat higher than the present value of $10.5 \mathrm{kcal} / \mathrm{mol}$. The geometries

Figure 5. Illustration of two structures of $\mathrm{B}_{3} \mathrm{H}_{9}\left(C_{3 v}\right.$ and $\left.C_{2}\right)$. The pentacoordinate boron in the C_{2} structure, which is only $3.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the C_{2} structure ${ }^{48}$ is very similar to the corresponding boron in 12b.
reported by Bühl and Schleyer for $\mathbf{1 7}$ are also slightly different because they optimized geometries with MP2 (FULL) while the present values are with MP2 (FC) (e.g. including all orbitals in computing the MP2 energy and gradients (FULL), versus freezing the core orbitals (FC)).

Two transition states $\left(\mathbf{T S 1 7 / 1 8}+\mathbf{H}_{2}, \mathbf{T S 1 7 / 2 0}+\mathbf{H}_{2}\right)$ have been located for the elimination of H_{2} from $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$. The higherenergy transition state $\mathbf{T S} 17 / \mathbf{1 8}+\mathbf{H}_{\mathbf{2}}$ of C_{s} symmetry has been presented twice in Figure 1 in order to more clearly show the relationship with the reactant (17) and the product (18). The transition state, formed by concerted elimination of both bridging hydrogens, is late as indicated by the short $\mathrm{H}-\mathrm{H}$ distance (0.795 \AA) and long $\mathrm{B}-\mathrm{H}$ distances $(1.514 \AA)$. The forward activation barrier $(77.7 \mathrm{kcal} / \mathrm{mol})$ is the largest encountered on the potential energy surface, while the product 18 is a slightly distorted 2,3$\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ trigonal bipyramid. If the $2,3-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ isomer is optimized in $C_{2 v}$ symmetry, the structure, while only $0.3 \mathrm{kcal} /$ mol higher than $\mathbf{1 8}$ at the MP2/6-31G(d) level, is actually a stationary point of order two. Optimizing this structure (given the designation TS18/19 despite having the wrong number of imaginary frequencies) in the direction of the largest imaginary frequency yields the minimum 19, which bears an obvious resemblance to $\mathrm{B}_{5} \mathrm{H}_{11}$. Only a small distortion of $\mathbf{1 9}$ is required to reach TS19/20 which is higher in energy by only $1.0 \mathrm{kcal} /$ mol at the standard level. Since 18 (through TS18/19) and 19 (through TS19/20) have such small forward barriers, the reaction is essentially a nonsynchronous reaction for the formation of 20 from 17. After much effort, a synchronous transition state (TS17/20 $+\mathbf{H}_{2}$) was located for the direct formation of $\mathbf{2 0}$ from 17. The transition state resembles a distorted square pyramid with a carbon atom in the apical position. The loss of H_{2} comes from one bridging hydrogen and one terminal hydrogen. The synchronous transition state $\left(\mathbf{T S} 17 / \mathbf{2 0}+\mathbf{H}_{2}\right)$ is $19.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathbf{T S} \mathbf{1 7 / 1 8}+\mathbf{H}_{\mathbf{2}}$. It should be emphasized that both structures are transition states (one imaginary fre-
quency) on the MP2/6-31G(d) potential energy surface. Planar $1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ (21), provided for comparison, is $33.4 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the $1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ trigonal bipyramidal structure (20).

Mechanism of Carborane Formation

The underlying mechanism of carborane formation from a boron hydride and acetylene involves the initial decomposition of the boron hydride to form a reactive boron hydride which subsequently reacts with acetylene. The reactive boron hydride will have at least one low-lying acceptor orbital which can accept electrons from the acetylene π-orbital to form a donoracceptor complex.

In the reaction of $\mathrm{B}_{4} \mathrm{H}_{10}$ with acetylene, three different reactive boron hydrides may be formed, $\mathrm{BH}_{3}, \mathrm{~B}_{3} \mathrm{H}_{7}$, and $\mathrm{B}_{4} \mathrm{H}_{8}$. All three will react readily with acetylene and the exact course of the reaction will depend on a subtle balance of activation barriers, concentrations, and temperature. Reactions of BH_{3} and $\mathrm{B}_{3} \mathrm{H}_{7}$ with acetylene are considered presently, while the reaction of $\mathrm{B}_{4} \mathrm{H}_{8}$ with acetylene will be considered in a separate paper.

The overall mechanism for formation of $1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$ from $\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2}$ is given below (eqs 11 and 12)
where only minima are indicated (Figure 2). The largest barrier is predicted for the $\mathbf{1 7} \boldsymbol{\rightarrow} \mathbf{2 0}$ step ($59.4 \mathrm{kcal} / \mathrm{mol}$). Thermodynamic properties of all minima and transition states are compared with $\mathrm{B}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{2}$ (which is given a reference of zero) in Table 2. Comparing enthalpies at 298 K , the four highest activation barriers are within $5 \mathrm{kcal} / \mathrm{mol}(47.9,49.5,45.2$, and $49.8 \mathrm{kcal} / \mathrm{mol}$). Interestingly, the activation barrier for forming $\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{BH}_{3}$ from $\mathrm{B}_{4} \mathrm{H}_{10}(38.2 \mathrm{kcal} / \mathrm{mol})$ is not the ratedetermining step. Free energies at 298 and 500 K are also determined to see the effect of temperature on the mechanism (Table 2). At 500 K , the free energy of the transition state to form $\mathrm{B}_{3} \mathrm{H}_{7}(35.0 \mathrm{kcal} / \mathrm{mol})$ is slightly larger than the free energy of the transition state for loss of H_{2} from $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}(34.3 \mathrm{kcal} /$
mol). The free energy at 500 K for the elimination of H_{2} from $\mathrm{B}_{3} \mathrm{H}_{7} \mathbf{T S} 2 / 4+\mathrm{H}_{2}$ (and the subsequent addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ to form 15) is not competitive with the steps shown in Figure 2. However, at more elevated temperatures, the initial elimination of H_{2} may be more favorable. The similarity of free energies perhaps explains why the composition of carborane products is dependent on temperature. Lower temperatures favor stable alkylboranes and nido-carboranes, while higher temperatures favor loss of hydrogen and formation of closocarboranes.

Conclusions

An initial effort is made to unravel the complicated mechanism of carborane formation from boron hydrides plus acetylene by studying the reactions $\mathrm{B}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow 1,2-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}+2 \mathrm{H}_{2}$. Several interesting discoveries have been made. First, the expected π-complex between $\mathrm{B}_{3} \mathrm{H}_{7}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ collapses without activation to an addition product. Next, the addition product preferentially rearranges to a cyclic system rather than undergo the hydroboration reaction. A series of steps leads initially to the cyclic $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ structure, and then to the more compact (and stable) nido $-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ cage. A rather high activation barrier separates the $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}$ cage from the closo-carborane, 1,2$\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5}$. Four activation barriers lie in the range $45-50 \mathrm{kcal} /$ mol above $\mathrm{B}_{4} \mathrm{H}_{10}$ plus $\mathrm{C}_{2} \mathrm{H}_{2}$. At higher temperatures, the reaction is driven by entropy, while at lower temperatures, the reaction is controlled by the thermodynamic stability of products.
Under the appropriate experimental conditions it may be possible to trap and/or isolate several of the intermediates found here (11d, 12a/b, 15, 16a, 16b). It is hoped that this study will provide impetus to further research in carborane formation.
Acknowledgment. Computer time for this study was made available by the Alabama Supercomputer Network and the NSFsupported Pittsburgh Supercomputer Center. I thank Dr. Nico J. R. van Eikema Hommes for making Molecule available, which was used for drawing the structures in Figure 1.

Supporting Information Available: Tables of total energies (hartrees), zero-point energies ($\mathrm{kcal} / \mathrm{mol}$), calculated vibrational frequencies (cm^{-1}), and intensities ($\mathrm{km} / \mathrm{mol}$) and \mathbf{Z}-matrices of the related species optimized at the MP2(FC)/6-31G(d) level (33 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA943985R

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 1, 1995.
 (1) For an excellent review see: Williams, R. E. Early Carboranes and Their Structural Legacy. In Advances in Organometallic Chemistry; Stone, F. G. A., West, R., Eds.; Academic Press: New York, 1994; Vol. 36, pp 1-55.
 (2) Shapiro, I.; Keilin, B.; Good, C. D.; Williams, R. E. J. Am. Chem. Soc. 1963, 85, 3167.
 (3) Grimes, R. N. J. Am. Chem. Soc. 1966, 88, 1895.
 (4) Linder, H. H.; Onak, T. J. Am. Chem. Soc. 1966, 88, 1886.
 (5) Grimes, R. N.; Bramlett, C. L. J. Am. Chem. Soc. 1967, 89, 2557.
 (6) (a) Grimes, R. N.; Bramlett, C. L.; Vance, R. L. Inorg. Chem. 1968, 7, 1066. (b) Grimes, R. N.; Bramlett, C. L.; Vance, R. L. Inorg. Chem. 1969, 8, 55.
 (7) Onak, T. P.; Dunks, G. B.; Spielman, J. R.; Gerhart, F. J.; Williams, R. E. J. Am. Chem. Soc. 1966, 88, 2061.
 (8) Franz, D. A.; Grimes, R. N. J. Am. Chem. Soc. 1970, 92, 1438.
 (9) Grimes, R. N. Carboranes; Academic Press: New York, 1970; pp 23-31.

[^1]: (10) Dewar, M. J. S.; McKee, M. L. Inorg. Chem. 1978, 17, 1075.
 (11) Clark, T.; Wilhelm, D.; Schleyer, P. v. R. J. Chem. Soc., Chem. Commun. 1983, 606.
 (12) Wang, X.; Li, Y.; Wu, Y.-D.; Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Org. Chem. 1990, 55, 2601.
 (13) Hommes, N. J. R. v. E.; Schleyer, P. v. R. J. Org. Chem. 1991, 56, 4074.
 (14) At very high levels of theory (QCISD(T)/6-311+G**//QCISD/6$31 \mathrm{G}^{*}$), a barrier of $0.05 \mathrm{kcal} / \mathrm{mol}$ is calculated for further reaction from the π-complex ${ }^{13}$
 (15) Gimarc, B. M.; Ott, J. J. Main Group Met. Chem. 1989, 12, 77.
 (16) Gimarc, B. M.; Ott, J. J. Graphs for Chemical Reaction Networks: Applications to the Carboranes. In Graph Theory and Topology in Chemistry; King, R. B., Rouvray, D. H., Eds.; Elsevier: Amsterdam, 1987; pp 285-301.
 (17) Gimarc, B. M.; Daj, B.; Warren, D. S.; Ott, J. J. J. Am. Chem. Soc. 1990, /12, 2597.
 (18) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: Englewood Cliffs, NJ, 1990; pp 218-248.

[^2]: (33) Ceulemans, A.; Goijens, G.; Nguyen, M. T. J. Am. Chem. Soc. 1994, 116, 9395.
 (34) (a) Gimarc, B. M.; Ott, J. J. Inorg. Chem. 1986, 25, 83. (b) Gimarc, B. M.; Ott, J. J. Inorg. Chem. 1986, 25, 2708. (c) Gimarc, B. M.; Ott, J. J. J. Comput. Chem. 1986, 7, 673.
 (35) Franz, D. A.; Grimes, R. N. J. Am. Chem. Soc. 1971, 93, 387.
 (36) Küpper, S.; Paetzold, P.; Boese, R. Chem. Ber. 1993, 126, 1787.

[^3]: (37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian92/DFT (Rev. G.2), Gaussian, Inc., Pittsburgh, PA, 1993.
 (38) (a) McKee, M. L.; Lipscomb, W. N. J. Am. Chem. Soc. 1981, 103, 4673. (b) Nobes, R. H.; Bouma, W. J.; Radom, L. Chem. Phys. Lett. 1982, 89, 497. (c) McKee, M. L.; Lipscomb, W. N. Inorg. Chem. 1985, 24, 762.
 (39) McQuarrie, D. A. Statistical Thermodynamics; Harper \& Row: New York, 1973.
 (40) McKee, M. L.; Page, M. Computing Reaction Pathways on Molecular Potential Energy Surfaces. In Review in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH, New York, 1993; Vol. 4, pp 35-65.

[^4]: (41) Ruscic, B.; Mayhew, C. A.; Berkowitz, J. J. Chem. Phys. 1988, 88, 5580.
 (42) (a) Page, M.; Adams, G. F.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1987, 91, 2675. (b) Curtiss, L. A.; Pople, J. A. J. Chem. Phys. 1988, 89, 4875. (c) Stanton, J. F.; Bartlett, R. J.; Lipscomb, W. N. Chem. Phys. Lett. 1987, 138, 525. (d) Defrees, D. J.; Raghavachari, K.; Schlegel, H. B.; Pople, J. A.; Schleyer, P. v. R. J. Phys. Chem. 1987, 91, 1857. (e) Sana, M.; Leroy, G.; Henriet, Ch. THEOCHEM 1989, 187, 233. (f) Lammertsma, K.; Leszczynski, J. J. Phys. Chem. 1990, 94, 2806.
 (43) For previous calculations on $\mathrm{B}_{3} \mathrm{H}_{7}$ see: (a) Stanton, J. F.; Lipscomb, W. N.; Bartlett, R. J. J. Am. Chem. Soc. 1989, $11 /, 5165$. (b) Cioslowski, J.; McKee, M. L. J. Phys. Chem. 1992, 96, 9264.
 (44) For styx notation see: Eberhardt, W. H.; Crawford, B. L., Jr.; Lipscomb, W. N. J. Chem. Phys. 1954, 22, 989.
 (45) Korkin, A. A.; McKee, M. L.; Schleyer, P. v. R. Inorg. Chem. 1995, 34, 961.

[^5]: (46) (a) McKee, M. L. J. Am. Chem. Soc. 1990, 112, 6753. (b) An error has been discovered in Table III of reference 46a for the reaction $\mathrm{B}_{4} \mathrm{H}_{10} \rightarrow$ $\mathrm{B}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$ at the MP2/6-311G(d.p) level. The reported barrier at that level, $31.3 \mathrm{kcal} / \mathrm{mol}$, is incorrect. The correct barrier, computed from the absolute energies in Table $2{ }^{46 \mathrm{a}}$ is $39.2 \mathrm{kcal} / \mathrm{mol}$. As a consequence, the two pathways for unimolecular decomposition of $\mathrm{B}_{4} \mathrm{H}_{10}$ (to $\mathrm{B}_{3} \mathrm{H}_{7}$ plus BH_{3} and to $\mathrm{B}_{4} \mathrm{H}_{8}$ plus H_{2}) are much closer together than previously reported. ${ }^{46 a}$
 (47) The transition vector for $10 \mathrm{c}\left(87 \mathrm{i} \mathrm{cm}^{-1}\right)$ is more complicated than a simple rotation of the $\mathrm{C}_{2} \mathrm{H}_{2}$ group. There is also a tilt of the $\mathrm{C}_{2} \mathrm{H}_{2}$ group toward the unique boron.

[^6]: (48) Duke, B. J.; Liang, C.; Schaefer, H. F. J. Am. Chem. Soc. 1991, 113, 2884.
 (49) Willershausen, P.; Schmidt-Lukasch, G.; Kybart, C.; Allwohn, J.; Massa, W.; McKee, M. L.; Schleyer, P. v. R.; Berndt, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1384.
 (50) Berndt, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 985.

[^7]: (51) Müller, M.; Wagner, T.; Englert, U.; Paetzold, P. Chem. Ber. 1995,

